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The development  of v ibra t ions  in a one-d imens iona l  chain of coupled osc i l l a to r s  is studied. 
Under the assumpt ion  that  the in teract ion between osc i l l a to r s  is weakly nonl inear  the methods  
of nonl inear  mechan ics  a re  used  to find the t ime dependence of the d i sp lacements  of e l emen t s  
of the chain a f t e r  an init ial  d i sp lacement  is given one of the links. The ma in  fea tu res  of the 
development  of v ibra t ions  are  shown. A compar i son  is made with the r e su l t s  of the l inea r  
theory .  

Coupled osc i l l a to r s  s imula te  va r ious  mechanica l ,  e l ec t r i ca l ,  and phys ica l  s y s t e m s .  In theore t i ca l  
pape r s  t r ea t ing  nons ta t ionary  v ibra t ions  in s y s t e m s  of coupled osc i l l a to r s  [1-4] the in terac t ion  was a s -  
sumed  ha rmonic .  However,  the l inea r  approximat ion  of the in teract ion is only the s imples t  approximat ion.  
In a number  of c a se s  the inadequacy of the l inea r  theory  is evident.  Numer i ca l  calcula t ions  [5-7] a n d p a p e r s  
taking account of the nonl inear i ty  of the in terac t ion  for  pa r t i cu l a r  e l emen t s  of the s t ruc tu re  [6-8] only p a r -  
t ia l ly  fill the gap. We d iscuss  below the p rob lem of finding the laws of mot ion of an infinite one -d imen-  
sional chain, taking account only of n e a r e s t - n e i g h b o r  in terac t ions  with a weak nonl ineari ty .  

I f  at t ime  zero  a ce r t a in  e l emen t  of the chain, dist inguished by the subscr ip t  ze ro ,  r e ce ive s  a d i s -  
p lacement  a0, the solution of the l inea r  p rob lem has the fo rm 

z~(t)= ad.~,-,(o~t), (1) 

where  xn(t) is the d i sp lacement  of the n- th  e lement  f rom its equi l ibr ium posit ion,  I i is the i - th  o r d e r  B e s s e l  
function of rea l  a rgument ,  ~o is the cutoff f requency of v ibra t ions  of  the chain, t is the t ime ,  and the links 
a re  numbered  in o r d e r  f rom the "zero"  e lement .  

Following the bas ic  p r e m i s e s  of the asympto t ic  methods  of studying nonl inear  v ibra t ions  [9-10] we 
seek  the solution of the p rob lem in the fo rm 

xn(t)= aa(t)len(OJt+On), (2) 

where a n and O n are  functions of the t ime  to be de te rmined .  It is expedit ious to introduce them in the fol -  
lowing way. We requi re  that  the exp re s s ions  for  the t ime  der iva t ives  of the d i sp lacements  x n have a fo rm 
analogous to the cor responding  l inear  expres s ion ,  i .e. ,  

(3) 
dxn/ dt= "~ (12n- i-- t ~n + i)( ~n) " an, ~n=o)t-~ f~n. 

Different ia t ing (2) with r e s pec t  to t and taking account of the postula ted  re la t ion  (3) we obtain 

don ( l"n ) --t dan 
at = -- 2 ~ (,,,) a,, ~- .  (4) 

/2n--I - -  12n+l 

The equations of mot ion of the e l emen t s  of the s t ruc tu re  have the f o r m  

a~.l ,Zt~ - ~:/'~ ( x~_~  -~_x,, +~ .+~)  + ~ t /  ( z . _ ~  - ~.)  ~ 1 (x._z~+~)l, (5) 

where  f is a function defining the fo rm of the nonl inear i ty  and ~ is a sma l l  p a r a m e t e r .  
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Equating the r ight-hand sides of Eqs. (5) to the result  of differentiating Eqs. (3) with respect  to the 
t ime we obtain a set of equations relat ing a n and 0 n. By using (4) we obtain 

d%ldt = t/2o (I~,+--t -- I2++,.) (++,) [el [%_iI2,+_~ (r -- %I2n (+,,)]-- 

-- ~! [a,J+,+ (%) -- a++d2n_ 2 (r --' m~-l~ [a+--F~+--2 (r + 

~+an+l12n+2(q~n+l)--an(12,z_2+Ien+2)(~n)i}{l/4[([2n_ l __I2n+1)2 --I2n(I_,n__2--2S2n~-Ien+2)l(~; )}--l. (6) 

The f i r s t - o r d e r  equations (4) and (6) for  the new functions a n and O n are  equivalent to the original  
sys tem of equations (5). 

Since dan/dt is different f rom zero  as a direct  consequence of the presence  of the nonlinear contr ibu-  
tion, it may  seem strange that the r ight-hand sides of Eqs. (6) have t e rms  which do not contain e o It should 
be taken into account however,  that the difference between a i and aj, just as between ~Pi and ~j  (i~j), r e -  
Sults f rom the presence  of the nonlinearity.  In the i inear case these quantities are the same for  all sub- 
scr ipts ,  if e~o  there  is general ly  no basis for assuming that the relations an(t) are the same for all n. 
Thus as e-~0 an+l ,  a n _ l ~ a n  and ~ n + l ,  ~I'n-t ~ n ,  which ensures  the t ransi t ion to the original  l inear  case.  

Equations (4) and (6) are no s impler  than (5). The exact system (4), (6) can, however, be replaced 
by a s impler  approximation. F i rs t  of all, in the t e r m s  which are  proport ional  to e the difference between 
an and a n ~ ~ and between q'n and ~I,n+ 1 can be neglected. The e r r o r  in this simplification is of a" higher 
o rde r  of smal lness  than e.  Secondly, Eqs. (4) and (6) can be averaged over  a range of �9 charac te r i s t i c  
for the Bessel  functions. The averaging operation will affect only the known functions. We change from 
the var iables  a n and O n to the corresponding quantities averaged over  the charac te r i s t ic  vibration cycle 
and denote the la t ter  by the same symbols  as for  the corresponding unaveraged quantities. The procedure 
described is analogous to the s tandard technique of separat ing the "fast" and "slow" t imes,  i.e., the a s y m -  
ptotic methods of studying nonlinear vibrations [9-10]. The averaging operation is par t icular ly  simple for 
large values of the arguments  of the Bessel  functions (for large t imes) since in this asymptotic  region the 
lengths of the vibration cycles  descr ibed by the Bessel  functions are unchanged. The infinite set of non- 
l inear  f i r s t - o r d e r  equations obtained by the operations described cannot be solved in general  form.  How- 
ever ,  a solution can be found in cer tain interest ing cases .  

The situation is simplest  when the func t ionf  is odd, i.e., when the curve for the dependence of the 
potential energy on distance is symmet r i c .  Using the asymptotic expressions for  the Bessel  functions [11] 

which are  accurate  to t e r m s  ~z  -1, we assume that f (y)  corresponds  to some odd power of y i f (y)=y2m+I) .  
We also assume that a n + 1 = an-~ = an and 0 n + ~ = 0 n - ~ = 0 n. The validity of these relations is not obvious, 
but in the range of applicability of Eq. (7) they are confirmed by calculations. 

To the accuracy  of Eq. (7) the denominator of Eq. (6) is 2 (~)  -~. Averaging over  a 2~r interval  gives 

d a n 2 3 m +  1 _  8 I (2m-+-l)!! a ~  +l (8) 
dt  o ~m (2m-~2)!!  (ot)m+l"  

The solution of the nonlinear equation (8) for m r  has the form 
1 

, 9 ~ ,  ~ . . . . .  ~| ; (9 )  

z : (Or, z 0 ~ ~tO, anO = an(to);  

e i (2ra ,--' i)!! 
A = 2 2m .~-, (m--l)! " 

The reference point t o must  be chosen so that at that t ime the Bessel  functions are adequately approxi-  
mated by the asymptotic forms (7). For  small  enough e and n the value of an0 hardly differs f rom an(0) = 

ao(O). 

The above assumptions are confirmed by the fact that the amplitude factors  a n do not depend on n. 
The quantities an(t) increase or  decrease  monotonically depending on the sign of e. For  e> 0a  n decreases ,  
and for e<0 an increases .  In both cases  a n approaches the limit 

t 
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The decrease  of the amplitude of the vibrat ions of the n-th element as compared with the l inear  case 
(1) for those same t imes  when e > 0 is explained by the increase  in the effective velocity of sound with in- 
c reas ing  effective stiffness of the s t ructure ,  i.e., the increase  in the rate of removal  of energy from the 
region of the initial perturbation.  

The development of vibrations in the chain for e > 0 can be represented  in the following way. The 
front of the elast ic  wave moves with a higher  velocity than in the corresponding l inear  case.  After  the pas-  
sage of the front of the elast ic  wave the amplitude of the vibrat ions of these elements  is great ly  decreased,  
and according to Eq. (9) there  is a more  rapid damping of the vibrat ions in the asymptotic  regime.  When 
the amplitude of the vibrations has decreased  to a cer tain value the development of the p rocess  goes over  to 
the "l inear  reg ime"  corresponding to the maximum amplitude factor  (10). The t ransi t ion stage to the regime 
of l inear vibrations is shor te r  the l a rge r  m, that is, the s teeper  the edge of the potential well. 

The equation for averaging the phase cor rec t ion  O n has the form 

d0~ "A 2m i~t)--ra (11) 
dt - -  an 

Hence it follows that 

0 n = 0.~ --- 2A (m, - -  1) o (zzo)m--1 7n 

0 n = 0 . 0 ~ - 1 2 ~ a 0 1 n t ~ , .  m ~ - l ;  

8 
Or, =~: 0~0 ~- 2 ~- (t -- t0). m = 0; 

0n0 : Or, (to). 

(12) 

(13) 

(14) 

The notation in Eqs. (11)-(14) is the same as in (9). In integrating Eq. (11) it is assumed that a n = a n o ,  since 
the difference between a n and an0 is of the o rde r  e .  

Equation (12) determines  the speeding up of the phase growth in compar ison with a l inear system for 
E > 0 and the slowing down for e< 0. The limiting value of 0 n depends cr i t ica l ly  on the amplitude of the v i -  
brat ions,  charac te r ized  by an0. 

When m = 0  and m = l  the phase cor rec t ion  On does not have a limit.  When m = l  d0n/dt  decreases  
without bound as t increases ,  and for m = 0 dO n/dt  =const  = 2aw -1. The resul t  for m =0 follows direct ly f rom 
the form of the equations of motion (5) and is of interest  only as an i l lustrat ion of the possibil i ty of the 
method. 

It must  be supposed that Eqs. (11)-(14) for 0 n are more  accurate  than Eqs.  (8) and (9) for a n since 
the form of Eq. (11) is determined by the contribution of the dominant t e r m s  of Eq. (7) and not by the c o r -  
rect ion t e r m s  (~z-3/~) as in the equations for an. 

Within the f ramework  of the mgthod used the most  favorable case is m =0. Here, in contras t  with 
other  cases  with m > 0, the value of 0 n is finite for all t. Thus in this case the postulated relat ions (3) and 
(4) are not completely fortunate.  If Eq. (3) corresponds  to the actual proper t ies  of the s t ructure  for m > 0 
and sufficiently large t, for m =0 such a relat ion is determined only by the method of calculation; i.e., in 
introducing condition (3) we per form a cer ta in  renormal iza t ion of the amplitude and phase cor rec t ions .  For  
m =0 this is somewhat inconvenient. Nevertheless  the resul t  (14) cor responds  completely to the proper t ies  
of the s t ruc ture .  This fact increases  the confidence in the reliabili ty of the resul ts  found in the present  
paper  for nonlinear sys tems .  
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