NONSTATIONARY PROCESSES IN A ONE-DIMENSIONAL
CHAIN OF COUPLED ANHARMONIC OSCILLATORS

A, S, Dolgov UDC 534,

The development of vibrations in a one-dimensional chain of coupled oscillators is studied.
Under the assumption that the interaction between oscillators is weakly nonlinear the methods
of nonlinear mechanics are used to find the time dependence of the displacements of elements
of the chain after an initial displacement is given one of the links. The main features of the
development of vibrations are shown. A comparison is made with the results of the linear
theory.

Coupled oscillators simulate various mechanical, electrical, and physical systems, In theoretical
papers treating nonstationary vibrations in systems of coupled oscillators [1-4] the interaction was as-
sumed harmonic. However, the linear approximation of the interaction is only the simplest approximation.
In a number of cases the inadequacy of the linear theory is evident, Numerical calculations [5-7] andpapers
taking account of the nonlinearity of the interaction for particular elements of the structure [6-8] only par-
tially fill the gap. We discuss below the problem of finding the laws of motion of an infinite one-dimen~
sional chain, taking account only of nearest-neighbor interactions with a weak nonlinearity.

If at time zero a certain element of the chain, distinguished by the subscript zero, receives a dis-
placement a,, the solution of the linear problem has the form

ra{t)=aolon (1), (1)

where xp () is the displacement of the n-th element from its equilibrium position, I; is the i~th order Bessel
function of real argument, w is the cutoff frequency of vibrations of the chain, t is the time, and the links
are numbered in order from the "zero" element.

Following the basic premises of the asymptotic methods of studying nonlinear vibrations [9-10] we
seek the solution of the problem in the form

2 (t)=an(t)]2n(0¢-+-05), (2)

where a, and 6, are functions of the time to be determined. It is expeditious to introduce them in the fol-
lowing way. We require that the expressions for the time derivatives of the displacements x, have a form
analogous to the corresponding linear expression, i.e,,

(3)

©
dap/di= 5 (Fan~t—I2n+1}(Pn)- an, Yn=0i-+bn.

Differentiating (2) with respect to t and taking account of the postulated relation (3) we obtain

d0 1, da
ri’=—2(——-—-—" )w,,)a:‘d—[‘- | (4)

1271—1 - 1211+1

The equations of motion of the elements of the structure have the form
@2z, Jdi? = 0Yi(z, s tanr1) TEY (@n—t —20) = [ (Za_Tnig)lr (5)

where f is a function defining the form of the nonlinearity and € is a small parameter,
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Equating the right-hand sides of Egs. (5) to the result of differentiating Eqs. (3) with respect to the
time we obtain a set of equations relating @, and 8,. By using (4) we obtain

dan/d{ =120 (I‘.’.n—l - [2n+1) (1].7”) {Ei [an—llinu‘l (lpn—i) - un'lin (qJn)]—
—ef {anlin (tpn) - an+1[2n~2 ("pn-i-l)] — 04 [anﬁllﬂn—z (U;n—i) +
- an+112n+2 ("pn-%-i) — (1277.—2 - 12n+:’.) (lpn)]} {1/4 [([211.—1 —’12;1-1- 1)2 - Ign (Izn—i - 21271 -+ [2n+2)] (q:n)}_i' <6)

The first-order equations (4) and (6) for the new functions a, and 6, are equivalent to the original
system of equations (5).

Since dan/dt is different from zero as a direct consequence of the presence of the nonlinear contribu-
tion, it may seem strange that the right-hand sides of Egs. (6) have terms which do not contain €. It should
be taken into account however, that the difference between a; and a;, just as between ¥ and ¥; (i=j), re~
sults from the presence of the nonlinearity, In the linear case these quantities are the same for all sub-
scripts. If £#0 there is generally no basis for assuming that the relations a(t) are the same for all n.
Thus as €+0 ay 14, ap-1—~dp_and ¥p 44, ¥y, =¥, which ensures the transition to the original linear case.

Equations (4) and (6) are no simpler than (5). The exact system (4), (6) can, however, be replaced
by a simpler approximation. First of all, in the terms which are proportional to € the difference between
an and a, +4 and between ¥y, and ¥j+; can be neglected, The error in this simplification is of a higher
order of smallness than £, Secondly, Egs. (4) and (6) can be averaged over a range of ¥ characteristic
for the Bessel functions, The averaging operation will affect only the known functions., We change from
the variables a, and 8, to the corresponding quantities averaged over the characteristic vibration cycle
and denote the latter by the same symbols as for the corresponding unaveraged quantities, The procedure
described is analogous to the standard technique of separating the "fast™ and "slow" times, i.e., the asym-
ptotic methods of studying nonlinear vibrations [9-10]). The averaging operation is particularly simple for
large values of the arguments of the Bessel functions (for large times) since in this asymptotic region the
lengths of the vibration cycles described by the Bessel functions are unchanged. The infinite set of non-
linear first-order equations obtained by the operations described cannot be solved in general form., How-
ever, a solution can be found in certain interesting cases.

The situation is simplest when the function f is odd, i.e., when the curve for the dependence of the
potential energy on distance is symmetric, Using the asymptotic expressions for the Bessel functions [11]

I, (5= l/% {cos (: — :;l — %) — 4\;? ! sin (: — %-\' — %‘)}, (7)

~1

which are accurate to terms ~z~*, we assume that f (y) corresponds to some odd power of y {f () =yimn -+
We also assume that a,, .44 =apn-;=an and 6y +,=0pn-4=8,. The validity of these relations is not obvious,
but in the range of applicability of Eq, (7) they are confirmed by calculations,

To the accuracy of Eq. (7) the denominator of Eq, (6) is 2(mp)~!, Averaging over a 2 interval gives

tmt
D amyr 24 Gm U e (8)

dt — 7 “ o 7w 2m 2T (@ymTlt

The solution of the nonlinear equation (8) for m =0 has the form
1

~.m.m m
73y .
0 ;rﬂzsn_i_.?Aa"lgu(_m _m) ' (9)

E -1

a,(ty=a,

s=0f, )= Qly, G = a, {tg);

The reference point t, must be chosen so that at that time the Bessel functions are adequately approxi-
mated by the asymptotic forms (7). For small enough € and n the value of ay, hardly differs from an(O) =
ao(o).

The above assumptions are confirmed by the fact that the amplitude factors ap do not depend on n,
The quantities ay({t) increase or decrease monotonically depending on the sign of €. For &> 0ap decreases,
and for £<0 g, increases. In both cases a, approaches the limit
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The decrease of the amplitude of the vibrations of the n-th element as compared with the linear case
(1) for those same times when &> 0 is explained by the increase in the effective velocity of sound with in-
creasing effective stiffness of the structure, i.e., the increase in the rate of removal of energy from the
region of the initial perturbation.

The development of vibrations in the chain for £> 0 can be represented in the following way. The
front of the elastic wave moves with a higher velocity than in the corresponding linear case. After the pas~
sage of the front of the elastic wave the amplitude of the vibrations of these elements is greatly decreased,
and according to Eq. (9) there is a more rapid damping of the vibrations in the asymptotic regime, When
the amplitude of the vibrations has decreased to a certain value the development of the process goes over to
the "linear regime" corresponding to the maximum amplitude factor (10), The transition stage to the regime
of linear vibrations is shorter the larger m, that is, the steeper the edge of the potential well.

The equation for averaging the phase correction 6, has the form
89, (11)

_n_. 2m | —m
g Z’Aan (ot) .

Hence it follows that

. . 4;10 3 - 3 .
0 =By = 24 oy — g M0t (12)
g t
6, = b+ 12550 n . m=; (13)
) &
0, =0, +25(t—t), m=0; : (14)
eno - en(to)

The notation in Egs. (11)-(14) is the same as in (9). In integrating Eq. (11) it is assumed that ay =ay,, since
the difference between ay and ay, is of the order .

Equation {12) determines the speeding up of the phase growth in comparison with a linear system for
£> 0 and the slowing down for £< 0, The limiting value of 8, depends critically on the amplitude of the vi-
brations, characterized by a,,0.

When m =0 and m =1 the phase correction 6, does not have a limit. When m =1 dé n/dt decreases
without bound as t increases, and for m=0 dg n/d‘c=cons’c =2¢w™!. The result for m =0 follows directly from
the form of the equations of motion (5) and is of interest only as an illustration of the possibility of the
method.

It must be supposed that Eqs. (11)~(14) for 6, are more accurate than Eqs. (8) and (9) for g, since
the form of Eq. (11) is determined by the contribution of the dominant terms of Eq. (7) and not by the cor-
rection terms (~z~%/%) as in the equations for an.

Within the framework of the method used the most favorable case is m =0. Here, in contrast with
other cases with m > 0, the value of 6, is finite for allt. Thus in this case the postulated relations (3) and
(4) are not completely fortunate. If Eq. (3) corresponds to the actual properties of the structure for m >0
and sufficiently large t, for m =0 such a relation is determined only by the method of calculation; i.e., in
introducing condition (3) we perform a certain renormalization of the amplitude and phase corrections. For
m =0 this is somewhat inconvenient, Nevertheless the result (14) corresponds completely to the properties
of the structure. This fact increases the confidence in the reliability of the results found in the present
paper for nonlinear systems, '
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